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Expert Systems Reasoning in Testing — 2

ABSTRACT

Expert systems can be used to aid decision making. A computerized adaptive test
is one kind of expert system, though not commonly recognized as such. A new
approach, termed EXSPRT, was devised that combines expert systems reasoning and
sequential probability ratio test stopping rules. Two versions of EXSPRT were
developed, one with random selection of items (EXSPRT-R) and one with intelligent
selection (EXSPRT-I). Two empirical studies were conducted in which these two new
methods were compared to the traditional SPRT and 0 an adaptive mastery testing
(AMT) approach based on item response theory (IRT). The EXSPRT-I tended to be
more efficiens than the AMT, EXSPRT-R and SPRT models in terms of average test
lengths.  Although furiher research is needed, the EXSFRT-I initially appears to be a
strong alternative to both IRT- and SPRT-based adaptive testing when categorical
decisions about examinees are desired. The EXSPRT-I is clearly less complex than
IRT, both conceptually and mathematically. It also appears to require many fewer
examinees to establish empirically a rule base when compared to the large numbers
required 1o estimate parameters for item response functions in the IRT model*.

THEORETICAL ISSUES

An Overview of Expert Systems

One of the more practical results from extant research in artificial intelligence is
the application of expert systems reasoning to aid in decision making or problem
solving. Expert systems have been developed, for example, to help physicians
identify types of bacterial infections, to aid investor decisions on buying and selling
stock, for aid in assembling components of computer systems, for making decisions
about where to drill for oil, for assisting underwriters in making insurance policies,
and for diagnosing causes of equipment failures to help repairpersons (cf., [1]).

An expert system consists of a set of production rules or frames, often called a
"knowledge base’. The name, 'expert system’, was coined because a knowledge base
is typically constructed by interviewing one or more experts in some domain of
knowledge. An attempt is made to capture their reasoning processes, when they solve
problems in that knowledge domain, in the form of "If..., then...” rules. For
example, in MYCIN, a famous early expert system for diagnosing bacterial infections,
one of the rules is:

IF 1) the gram stain of the organism is negative, and
2) the morphology of the organism is rod, and
3) the aerobicity of the organism is anaerobic,

“This study was supported in part by & grant from the Proffit Foundation, School of Education,
Indiana University. Hing-Kwan Luk adapied and extended considerably the author's computer code for
conducting the test re-enactments with the four methodologies. Luk also assisted with statistical
analyses. Thomas Plew must be acknowledged for his significant contribution of an initial method of
intelligent item selection for the EXSPRT, subsequently refined by the author. Had Tom not ssked the
questions he did in a doctorsl seminar taught by the author in 1987, then EXSPRT might not exist today.
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THEN there is suggestive evidence (.7) that the identity of the organism
is Bacteroides. ([2], p. 34)

This particular rule is one of over 400 such rules that comprise the MYCIN
knowledge base. A computer program, called an 'inference engine’, uses this rule set
as data to help physicians identify unknown bacteria. The program makes inferences
by using both the rule set and specific answers to questions it asks the physician about
properties of the current situation (e.g., patient symptoms, white blood cell count, and
other lab test results). MYCIN has been shown to be more accurate in its
identifications of bacteria than typical practicing physicians, particularly in identifying
those bacter.a which are rarely observed.

Expert systems are not usually viewed as replacements for human decision
makers, but as aids or tools for such persons. Expert systems obviously cannot
perform in areas not covered by the knowledge base. Furthermore, decisions reached
by expert systems can be no better than the accuracy of the knowledge or rules that
comprise the database.

In education and training, expert systems principles have been applied mostly in
intelligent tutoring systems ({3], [4]). As an example, GUIDON was later developed
from MYCIN in an attempt to teach physicians how to identify different kinds of
bacteria [5].

Similarities between Expert Systems and Adaptive Tests

One efficient and empirically validated approach to computerized adaptive testing
(CAT) is based on item response theory (e.g., [6]). An adaptive test is no longer than
necessary to obtain a satisfactory estimate of an examinee’s ability, and items are
selected which are close to his or her estimated ability level. For example, if a
person misses a question, a somewhat easier question is next asked. On the other
hand, if a question is answered correctly, then a slightly more difficult question is
subsequently selected. A computerized adaptive test does not waste time
administering questions that are too hard or too easy for a particular individual.
Adaptive tests tend to be shorter than conventional fixed-length tests and the results
are as reliable if not more so (e.g., [6]).

Expert systems and adaptive computer-based tests have many properties in
common:

1. The rule base for a CAT is a set of item characteristic curves estimated from
prior test administrations. That is, each item characteristic curve is a compact way of
saying, "If the examinee ability level is X, and item ¥ is asked, then the probability of
a correct response is predicted to be Z."

2. Both expert systems and CATs use inference engines that are often Bayesian
or Bayesian-like. Even if rules do not have probabilities (or confidence factors)
associated with them, they can still be treated as a special Bayesian case where
associated probabilities are either one or zero (cf., [7]).

3. The goal of an expert system is to choose from a number of alternatives
(e.8., causes of equipment failure) using the rule base and answers to questions it
selects and asks of a particular user. The goal of a CAT is to estimate an examinee's
achievement or ability level with enough precision to make a decision such as pass/fail
or a grade classification using a rule base of item characteristic curves and answers (0
questions it selects and gives to examinees.
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4. An expert system selects which questions it asks by using forward or
backward chaining and the rule base. A CAT can select questions on the basis of the
amount of information they provide, depending on the ability of an examinee. For
example, Weiss and Kingsbury use a maximum information search and selection
(M:Z8) procedure [6].

Thus, although not widely recognized at this time, an adaptive testing system is
one type of an expert system. The author realized this when developing computer
cude for an expert system, having already developed code for Bayesian decision
methodologies and a computer-based testing system.

On hindsight, expert systems and adaptive tests have much in common. Yet in
the research literature it appears that these two threads of development have been
almost entirely independent. One camp has grown out of an artificial intelligence
movement and the other from a psychological testing and measurement perspective.
A recent computer search of numerous bibliographic databases only turned up thirteen
articles where the terms, "expert systems’ or "artificial intelligence’ and ’adaptive’ or
"computer’ and ‘testing’ or "test’ were used as descriptors. The two camps not only
use different language to describe their activities, but also tend to publish in different
journals and attend different conferences.

THE DEVELOPMENT OF EXSPRT

A problem with the IRT-based approach to adaptive testing faced by many
practitioners, however, is that a relatively large number of examinees must be tested
in advance in order to estimate accurately item parameters of difficulty,
discrimination, and lower asymptotes (200 to 1000 depending on the model used and
the number o1 items in a pool). Furthermore, proponents of the Rasch model (one-
parameter IRT model) have indicated that there is no valid way of estimating item
discrimination and lower asymptotes for the two- and three-parameter models without
imposing arbitrary constrainte (cf., [8]).

The author has previously investigated the predictive validity of the sequential
probability ratio test (SPRT) for making mastery decisions, where the lengths of tests
were adapted according to student performance ([9]). Mastery decisions reached with
the SPRT, when used conservatively, agreed highly with those based on total test
results. Nonetheless, the SPRT does not explicitly take into account variability in
item difficulty, discrimination or chances of guessing as does the three-parameter IRT
model. Moreover, items are selected randomly in the SPRT, rather than on the basis
of their characteristics and estimated examinee ability or achievement level as in the
MISS procedure.

Is there some middle ground between the relatively simplistic SPRT decision
model and the relatively sophisticated IRT-based approach? When considering the
problem from an expert systems perspective, a solution became apparent. Instead of
considering a continuum of alternarives, as is the case in IRT-based CAT, it was
hypothesized that if the goal of an adaptive testing system is to choose between a few
discrete alternatives (e.g., mastery or nonmastery; grades of A, B, C, etc.), then it
should be possible to develop a satisfactory rule base from a smaller sample of
examinee test data—~compared to the IRT model.
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Development of the Rule Base for a Given Test Item Pool

Assume that we have developed a pool of test items which match a particular
instructional objective and that our goal is to choose between two alternatives for any
given student: mastery or nonmastery of the objective. For each item i in the pool
we create four rules:

Rule i.1: 1f the examinee is a master and item i is selected, then the probability
of a correct response is P(C, | M).

Rule i.2: 1f the examine is a master and item { is selected, then the probability
of an incorrect response is P(—C, | M).

Rule i.3: If the examinee is a nommaster and item i is selected, then the
probability of a correct response is P(C, | N).

Rule i.4. If the examine is a nonmaster and item i is selected, then the
probability of an incorrect response is P(~C; | N).

Notice that these rules are essentially in the same if-then form as the sample rule
from the MYCIN expert system at the beginning of this article. In MYCIN the rules
were developed on the basis expert knowledge on the co-occurrence of various kinds
of gram stain, morphology and aerobicity and the incidence of each kind of
bacterium. In our case, we will rely on empirical data collected on the test items with
a representative sample of examinees who are characterized by the discrete categories
from among which our expert system will later attempt to choose.

In the dichotomous case, the estimates of probabilities of correct responses to
items by masters and nonmasters are determined as follows?:

1. Give the pool of test items to a representative group of examinees, about
half of whom are expected to be masters and half nonmasters--i.e., for
whom you expect a wide range of scores on the test.

2. Choose a mastery cut-off score (e.g., .85).

3. Divide the original group into a3 mastery group and nonmastery group based
on their total test scores and the mastery cut-off.

4. For each item in the mastery group, estimate the probabilities of correct
and incorrect responses by the following formulas (see [10]):

PIC I M) = (#r, + D/(#ra + #w, + 2) {1.1}

P(~C [ M) = 1-PC | M) {1.2}

*Note that this reasoning can be extended to more than two categories, such as letier grade
designations.

*Note that the estimates of these probabilitics of correct responscs to items by masters and
nonmasters will never be one or zero. This means that, in the EXSPRT Bayesian updating process
during the administration of & test 0 an examinee, the probabilitics of the mastery and nonmastery
altemnatives will never be zero or oae, though these extremes may be closely approsched.
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where  #r,, = number of persons in the mastery group
who answered the item correctly;

and #w, = number of persons in the mastery group
who missed the item.

5. Do likewise for the nonmastery group for each item:
P(C,| N) = (#r, + D)/(#r. + #w, + 2) {1.3}

P(-C/[N) = 1-P(C/|N) {14}

Method of Making Inferences in the EXSPRT
The reasoning procedure employed in our expert systems approach is Bayesian,

with the addition of stopping rules from the sequential probability ratio test (SPRT)
(cf., [9, 10, 11]). After eaci: nbservation (1.e., administration of a test item), a

likelihood ratio is computed:

P, TT P(CIMy [ 1-P(C,|¢) ¥
LR = i=} {2}

P, H PCINY [ 1-P(CIM Y
where
P. = prior probability that the examinee is a master,
P, = prior probability that the examinee is a nonmaster*
and s = 1, f= 0if item { is answered correctly,
or s = 0,f=1ifitem i is answered incorrecuy.

The three stopping rules are:

IfLR 2 (1-p8)+«, then stop asking questions and choose mastery.  {3.1}

If LR < B+(1- «), then stop asking questions and choose nonmastery.
{3.2}

Else ask another question, update LR, and reiterate rules 3.1 to 3.3.
{3.3}

“Note that if the prior probabilities of mastery and non-mastery are equal, then they drop out of the
formula for the likelihcod ratio.

o> pe
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Alpha and beta are Type I and II decision errors, respectively. Alpha is the
probability of choosing mastery when the nonmastery alternative is actually true. Beta
is the probability of choosing nonmastery when the mastery altemnative is true.

For numerical examples of this Bayesian reasoning process, the reader is
referred to {12]. Also note that expert systems can use reasoning procedures other
than Bayesian, such as the Dempster-Shafer rules. See [7] for further examples of
Bayesian reasoning in expert systems.

Random Item Selection: EXSPRT-R

When the EXSPRT was initially conceived, it was seen as an extension of the
Bayesian approach to the SPRT, as noted in [9], using empirically derived data for
estimating the probabilities of correct responses by masters and nonmasters to each
test item rather than average probabilities across all items. In this initial approach to
the EXSPRT, items were selected randomly without replacement, and it was assumed
that observations were independent in order to multiply the conditional probabilities to
form the likelihood ratio. This version of the EXSPRT is referred to as EXSPRT-R,
in contrast an intelligent item selection procedure discussed below.

A reader who is knowledgeable about expert systems may note that the method
of choosing questions in the EXSPRT approach to adaptive testing departs from the
typical method of forward or backward chaining used in many expert systems. One
might argue that the EXSPRT approach is not really expert systems’ reasoning
because forward or backward chaining is apparently not used to determine which
question to ask next in order to reach, or move closer to, a conclusion (i.e., choose
from a number of discrete alternative goals).

On the other hand, one who understands expert systems deeply, having written
computer code to carry out the reasoning, will conclude that the EXSPRT is doing
essentially the same thing as occurs in either backward or forward chaining. The
rules in the EXSPRT are all of the same form, however, in contrast to rule bases in
expert systems where a variable’s value in a consequent condition in one rule is also
part of an antecedent condition in another rule, etc. (¢f. {7]). One could say that
instead of just asking a particular question once, and then immediately making an
inference based on the answer to that question—as is usually the case in most expert
systems—in the EXSPRT many questions of the same kind are asked until an inference
can be made confidently, In the EXSPRT-R questions are chosen at random in order
to comprise a representative sample from the item pool.

Inselligent Item Selection: EXSPRT-I

Thomas Plew was not satisfied with EXSPRT-R, since it did not use information
about test items in the selection process {13]. This stimulated the joint development
with the present author of an item selection procedure that is modeled after basic
principles used by Weiss and Kingsbury in the MISS (maximum information search
and selection) procedure. Though the principles are comparable, the mathematical
approaches are quite different.

In the EXSPRT-I (i.e., with "intelligent™ item selection), the reasoning is as
follows:

Item discrimination. If we are trying to choose between mastery or nonmastery
alternatives, then an item is more discriminating when the difference between
probabilities of correct responses by masters and nonmasters is greater. For example,
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if the probabilities of a correct response to item #5 are .90 for masters and .25 for

nonmasters, then item &5 is very discriminating (difference = .65). On the other

hand, if the probability of a correct response to item #53 is .85 for masters and .75

for nonmasters, then this item is much less discriminating (difference = 10). Orif

the probability of a correct response to item #12 is .60 for masters and .80 for

nonmasters, then such an item is negatively discriminating (difference = -.20).
Thus, the discrimination index for item i is defined:

D, =PFC|[M-PC|N) {4}

Item/examinee incompatibility. Not only do we want to select highly
discriminating items, but also we want to select items that are matched to an
examinee’s estimated achievement or ability level. In theory, we gain little additional
information by administering items which are very easy or very hard for a given
individual. Better items would be those which a person has a 50/50 chance of
answering correctly--i.e., which are very close to her or his achievement level. For
example, if an examinee's achievement level is estimated to be .80 (on a scale from
zero to one), then a good item would be one that was answered incorrectly by %0
percent of the examinees in the item parameter estimation sample [ P(C) = .20 for
masters and nonmasters combined ].

Thus, the item/examinee incompatibility index is defined for each item:

1, = abs{(1 - P(C)) - E&)} (s}
where  E(@) = (#r; + 1)/(#1; + #w; + 2) {6}
and P(C) = (#r; + )/(#r, + #w, + 2) {7}

Note that #r; and #w; are the numbers of questions answered correctly and incorrectly,
respectively, thus far in the test by the current examinee. Note also that the estimate
of P(Cy) is based on the roral number of persons in the parameter estimation sample
for item i, irrespective of mastery status. Thus, #r, is the number of persons who
answered item i correctly and #w; is the number who answered it incorrectly. Finally,
note that the item/examinee incompatibility index is based on the absolute value of the
difference between the estimate of the probability of an incorrect response to the item
and the estimate of the current examinee’s achievement level (proportion correct
metric).

Item wiility. As a test proceeds, item utilities are re~calculated for all items
remaining in the pool, in order to select and administer a new one that now has the
most utility for an examinee:

U; = DJ/(T; + 6) {8}
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where & = some arbitrary small constant (e.g.,
.0000001), to prevent division by zero in
case [; = 0.°

Thus, each utility value is simply the ratio of the discrimination of item i and its
incompatibility with person j’s achievement level. The item that is selected next in
the EXSPRT-I (intelligent selection) is the remaining one with the greatest utility at
that point for that particular examinee. This means that the item selected next is the
one which discriminates best between masters and nonmasters and which is least
incompatible with the current estimate of that examinee’s achievement level. Note
that item utilities change during a test, depending on an examinee’s performance
which affects the estimate of his/her achievement level in the item/examinee
incompatibility index. In effect, the EXSPRT-I is comparable to the two-parameter
item response theory model (IRT~see [14]) in that both item discrimination and item
difficulty are considered in the item selection process.

Unanswered Questions

Since the EXSPRT-R and EXSPRT-I are new approaches to computerized
adaptive testing, two empirical studies were conducted to compare these approaches to
extant IRT-based adaptive mastery testing and SPRT approaches (cf., [6], [9], [14]).
Of major concern was the accuracy with which each adaptive model could predict
decisions based on total test scores. Does each adaptive method make mastery and
nonmastery decisions with no more errors than would be expected by a priori error
rates? Second, how efficient is each adaptive method in terms of average test lengths
for mastery and nonmastery decisions? Are any of the methods more efficient than
others?

FIRST STUDY

Digital Authoring Language Test

A computer-based test on the structure and syntax of the Digital Authoring
Language was constructed, consisting of 97 items, and referred to as the DAL test.
This test was comprised of muitiple-choice, binary-choice, and short-answer
questions. The test was highly reliable (Cronbach & = .98). The DAL test was also
very long, usually taking between 60 and 30 minutes to complete, and it was very
difficult for most examinees (mean score = 63.2 percent correct, S.D. = 24.6).

Examinees

The persons who took the DAL test were mostly either current or
former graduate students in a course on computer-assisted instruction taught by the
. author. Those students who were currently enrolled at the time took the DAL test
twice, once about mid-way through the course when they had some knowledge of
DAL-which they were required to learn for developing CAI programs—and once near
the end of the course when they were expected to be fairly proficient in DAL. The

SAltemnatively, 8, could be considered as some kind of "guessing” factor for the item. However, this
will not be considered in the present paper.

10
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remainder of the examinees took the DAL test once. Since the test was long and
difficult, no one was asked to take the test who did not have some knowledge of DAL
or other authoring languages.

{est Administration

The DAL test was individually administered by the Indiana Testing System [15).
As an examinee sat at 3 computer terminal, items were selected at random without
replacement from the total item pool until all items were administered. Students were
not allowed to change previous answers to questions, nor was feedback given during
the test. Upon completion of test, complete data records were stored in a database,
including the actual sequence in which items were randomly administersd to a student,
response time, literal response to each item, and the item scoring (correst or
incorrect). Examinees were informed of their total test scores at the end of the test.
There were a total of 53 administrations of the DAL test in the first study.

Experimental Metrhods

The basic procedure was to re-enact each test, using actual examinee responses
in the database, for each of the four adaptive methodologies: 1) IRT-based adaptive
mastery testing (AMT—with maximum information search and selection {MISS]), 2)
seguential probability ratio test (SPRT), 3) EXSPRT-R (random selection of items),
and 4) EXSPRT-I (intelligent selection of items—see above descriptions).

Item parameser estimation. Two random samples of examinees were used to
estimate item parameters (n = 25 and n = 50), the latter containing the former. This
was done to see if increasing the sample size used for parameter estimation would
result in fewer decision errors in the four methods. Due to the relatively small
sample sizes, the one-parameter AMT model was used—i.e., only b; estimates were
obtained for the two samples using program BICAL [16]. For the EXSPRT-R and
EXSPRT-I, the rule base for each parameter estimation sample was constructed using
formulas {1.1}, {1.2}, {1.3} and {1.4}. The mastery cut-off was set at 72.5 percent,
half way between the established .85 mastery level and .60 nonmastery level used in
an earlier study of the SPRT only [9]. In the current study, however, the mastery and
nonmastery levels for the SPRT were established empirically from the .725 cut-off
and the two parameter estimation samples. The mean p.oportion correct for masters
was used as the mastery level and the mean proportion correct for nonmasters was
used as the nonmastery level in each sample. In effect, the SPRT was treated just like
the EXSPRT-R, except that the rule quadruplets for all items were the same in the
SPRT, based on the sample means for masters and nonmasters, respectively.

Test re-enactments. Once the parameter estimation samples were chosen, then
two doctoral assistants independently wrote computer programs in two different
languages (Pascal and DAL) to construct the rule bases for the EXSPRT, and to carry
out the four different adaptive testing methods on the same 53 sets of test
administrations. This was done to reduce the possibility of error in coding these
rather complex methodologies, especially the AMT model. When results did not
agree, as was occasionally the case, this helped to identify and ameliorate errors in
coding. The one difference that was not correctable was traced to the precision of
arithmetic in DAL and Pascal on 2 VAX minicomputer.

It was discovered that on occasion the MISS procedure in the two programs
would begin to select different items in the AMT model after 15 to 20 items had been

11
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retroactively "administered” to an examinee, This occurred because the updating of
the estimate of © and its variance, and in turn the item information estimates for that
© estimate, would tend to differ very slightly in the two code versions as a test
progressed. Consequently, the MISS procedure would occasionally pick a different
item in the two different versions when estimates of item information were very close
for two or more items remaining in the pool. From that point on in a test, different
item sequences were observed. The average AMT test length in the DAL version
tended to be about one item shorter, compared to the Pascal version, but the decisions
reached were the same with one exception.

These discrepancies do point out a problem inhert . in the IRT-based approach,
which contains numerous multiplications, divisions, and exponentials (see [14],
formulas {9) to {25}). Very small errors due to rounding or differences in precision
of arithmetic can magnify themselves rather quickly. This problem was not observed
with the EXSPRT-I, EXSPRT-R, or SPRT-other than differences in the millionth’s
decimal place when computing probability ratios.

1. AMT re-enactment. The mastery cut-off was converted to ©, using the test
characteristic curve (see [14], formula {24}) and the item parameter database
constructed from the respective parameter estimation sample (either n = 25 or 50).
The value of O, was used as the initial prior © and the prior variance was set to one,
as recommended by Weiss and Kingsbury [9]. The MISS procedure was used to
select the next test item for the re-enactment for each examinee (see [14], formulas
{10} to {12}). The correctness of the examinee’s response to that item was
determined by retrieving it from the database. Bayesian updating of © and its
variance was accomplished with Owen’s method [17] (see [14], formulas {13} to
{22}). After each item was "administered”, the AMT stopping rules were applied
using a .95 confidence interval (see [14], formulas {25.1} to {25.3}). If a decision
could be reached, the re-enactment was ended at that point. The number of questions
answered correctly and incorrectly in the AMT and the decision reached for that
examinee were written to a computer data file. Also stored in that file were the total
test score for that examinee and the agreement between the AMT decision and the
total test decision. If no decision could be reached by the AMT model before
exhausting the test item pool, then a decision was forced at the end of the test: If the
current estimate of © was greater than or equal to 6., the examinee was considered to
be a master; otherwise a3 nonmaster.

2. SPRT. The mastery and nonmastery levels required by the SPRT were
empirically established from the parameter estimation samples, as described above.
Since the SPRT requires random selection of items, test items were "administered” in
a random order. Alpha and 8 levels were set at 0.025, to make the overall decision
error rate (.05) equivalent to the .95 confidence interval method used in the AMT
approach. When the SPRT reached a mastery or nonmastery decision, results were
stored in a separate data file in the same manner as described above for the AMT.

3. EXSPRT-R. As in the SPRT, items were "administered” in a random order.
However, the rule bases constructed from the parameter estimation samples were
used, of course, in the EXSPRT-R method of Bayesian updating (formula {2}, with
equal prior probabilities) and SPRT stopping rules ({3.1} to {3.3}). For a description
of EXSPRT-R procedures, see [12] for an example of expert systems reasoning during
computer-based testing. When the EXSPRT-R reached a decision, the test re-
enactinent was ended and results written to a data file as before.

-
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4. EXSPRT-I. This method was the same as the EXSPRT-R, except that items
were selected intelligently, based on their utility indices (see formulas {4} to {8}).
Thus, like the AMT, items were not “administered”™ randomly for each re-enactment.
Since no feedback was given during the test it is unlikely that decisions reached by
both AMT and EXSPRT-I methods would be systematically affected by factors other
than differences in the adaptive methods themselves. One mitigating factor might be
examinee fatigue, where they were more likely to answer questions incorrectly at the
end of the long and difficult test. However, since all test items were originally
administered in a different random order for each individual, it is very unlikely that
fatigue would systematically bias any findings.

Results from the First Study

For the DAL test, IRT item parameters (b’s) were estimated from samples of 25
and 50 examinees. EXSPRT rule bases were also derived from the same samples.
Descriptive information is given about the two samples in the left side of Table 1. It
can be seen that there were about the same proportions of masters and nonmasters in
each sample. In the sample of 50 there were 23 masters whose average test score was
87.3 percent, and 27 nonmasters who scored 45.1 percent correct.

Mean test lengths of each of the four methods, variation in test lengths, and
decision accuracies were compared. If the decision made by an adaptive method % s
the same as that reached on the basis of the entire test item pool, this was considered
to be a "hit". Thus, the accuracy measures are the percent of correct predictions
made by each method. There were 28 nonmasters and 25 masters identified by the
entire 97-itam test, when the cut-off score was set at 72.5 percent correct.

First, note that the parameter sample size seems to make little difference in the
mean test length within each method. For example, within the AMT model 20.6
items were required for nonmastery decisions when item parameters were based on a
sample of 25, compared to 3 mean of 18.3 for the sample of 50. For the EXSPRT-],
5.6 items were required for nonmastery decisions in the sample of 25, compared to a
mean of 5.9 for the parameter sample of 50. Please note—and this is confusing—that
the mean test lengths for each of the four methods are based on the same 53 test
administrations, where all 97 items were originally given, and which were re-enacted
under each adaptive method. The size of the parameter estimation sample refers to
the number of examinees randomly selected on whom the item difficulties were
estimated for the AMT model and on whom the item rule bases were constructed for
the EXSPRT-R and EXSPRT-I models.

Decision accuracies. For the 53 administrations of this DAL test there does
seem to be some difference in decision accuracies within each model for the two
parameter estimation sample sizes. The decision accuracies tended to be high for all
methods. Decision accuracies were compared to expected values of .975 correct
mastery dicisions and .975 correct nonmastery decisions, using Chi-square goodness
of fit tests ‘e.g., see [18]). A significant Chi-square (p < .05) means that the
observed decision accuracies departed from what was expected according the g priori
decision error rates that were established for each of the four adaptive testing
methods.

When 25 examinees were used for parameter estimation, there were two
significant departures from expected accuracy. The EXSPRT-I was 85.7 percent
accurate in nonmastery decisions, which significantly differed from the expected 97.5
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Table 1. Efficiency and Accuracy of the Four Adaptive Testing Methods in
the First Study.®

Item Parameter
Sample Description

ADAPTIVE TESTING NETHOD

AMT SPRT EXSPRT-R  EXSPRT-1

Nean Score Nean Length Mean Length MNean Length Mean Length
(S8.D.) (S.0.) (5.0.) (s.0.) {s.D.)
n Accuracy pAccuracy Accuracy Accurscy
Masters 87.46 8.40 a.n 7.56 S.44
{ 7.90) { 9.62) ¢ 5.18) { 3.22) ( 1.23)
hi4 100.0 9.0 100.0 100,90
Normasters  42.66 20.57 10.54 12.71 5.64
(15.83) (26.45) { 7.148) (15.468) ¢ 2.02)
13 96.4 8s.7* 96.4 g5.7*
Total 64.16 14.83 9.68 10.28 5.55
25.99) (19.77) ( 6.29) (11.6%) ( 1.68)
2 98,1 88,7 98,1 92.5
Nasters 87.27 8.28 10.36 8.44 A.84
( 7.8%) ( 8.1%) { 6.92) ( 8.76) ( 2.64)
23 100.9 96,0 96.0 100,09
Normasters 45.06 18.2¢ 10.11 ¢.30 5.93
(16.25) (24.43) (10.97) ( 9.15) { 2.28)
27 96.4 89.3* 92,9 2.9
Total &46.47 13.57 10.23 8.9 6.36
(24.89) (19.14) { 9.20) ( 8.94) ( 2.47)
50 98,1 92,5 %.3 96.2

*Percert accuracies were tested by goodness of fit, where .975 accurscy was
expected according to the 8 priori error rates for mesters and normasters., Oniy
those percent accuracies which differed significantly from the expected accuracies,
asccording to a chi-square test (d.f. = 1, p < .05) are merked with an asterisk.

°AIphA = § = 0.025 for the SPRT, EXSPRT-R, and EXSPRT-I; 2 .95 confidence interval was used
with the AMT. There were 53 administrations of the DAL test which were re-enacted for each of the

four adaptive methods.

14



Expert Systems K-asoning in Testing — 14

percent accuracy. At the same time, however, the EXSPRT-I was reaching decisions
when the other models were requiring two to four times as many items. ‘The SPRT
accuracy for nonmastery decisions was also significantly lower than expected.

When 50 examinees we-e used for parameter estimation, the AMT, EXSPRT-R,
and EXSPRT-I models were within the expected range of accuracy. The SPRT failed
to make as many correct nonmastery decisions as were expected. What is notable is
how well all of the adaptive methods predicted total test decisions, while using
between 5 and 20 items from the 97-item pool to reach those decisions—a very
substantial reduction in tes: lengths (95 to 80 percent decrease).

Efficiency. A repeated measures ANOVA (MANOVA) was conducted to see if
there were significant differences among the mean test lengths for the four adaptive
methods. This was done for the results based on the parameter sample of 50 for the
53 test administrations. Hotelling’s 7% was significant at the .05 level. However, the
sphericity assumption was violated, due to the large differences in variunces among
the four methods. A post hoc comparisoa procedure suggested by Marascuilo and
Levin ([19], pp. 373-381) for this kind of situation was conducted for all pair-wise
contrasts of mean test lengths. One statistically significant difference was found. The
mean test length for the SPRT was significantly greater than that for the EXSPRT-I.
Even though some of the other contrasis have greater magnitudes of difference, the
within-method variances are very different themselves. It can be noted that, overall,
the AMT model required about twice as many items to reach decisions (13.6) as did
the EXSPRT-I (6.4), though it was not statistically significant at the .05 level.

The variances in average test lengths within each adaptive method were
significantly different, as noted above in violation of the sphericity assumption. The
variance in test lengths for the AMT model was approximately 60 times larges than
that for the EXSPRT-I model (19.14% vs. 2.47%). In the AMT model, tests tended to
be longer before nonmastery decisions were reached, and there was much more
varjation in test lengths compared to the remaining models. The variation in lengths
of tests with EXSPRT-I method was relatively smali compared to variation in the
remaining models.

SECOND STUDY
Computer Functions Test
A computer-based test on how computers work, consisting of 85 items, was
constructed. The COM test, as it is referred to here, was comprised of about half
multiple-choice, one-fourth binary choice, and one-fourth fill-in type questions
(Cronbach & = .94), Compared to the DAL test, the COM test was much easier for
most examinees (mean score = 79.0 percent, S.D. = 13.6).

Examinees

About half of those who took the COM test were from two sections of an
introductory graduate-level course on use of computers in education. The remazinder
were mostly volunteers from an undergraduate-level course for non-education majors
who were learning to use computers. A small number of students were volunteers
recruited at the main library on campus.

15
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Test Administration and Experimental Methods

The COM test was individually administered by the Indiana Testing System in
the same manner as the DAL test. There were a total of 104 administrations of the
COM test in the second study. The same four adaptive testing methods were re-
enacted from actual examinee test data in the very same manner as described above
for the DAL test.

Results from the Second Study

Since there were more administrations of the COM test, parameter estimation
samples of 25, 50, 75 and 100 were selected at random. Four sets of &; coefficients
were obtained for the AMT model and four rule bases were constructed for the
EXSPRT models based on the same four parameter .stimation sampies. See the left
sides of Tables 2.1 and 2.2 for descriptive information about the parameter estimation
samples.

Accuracy of predictions. When the parameter estimation sample was 285, all four
adaptive methods did not perform as well as expected in correctly predicting
nonmasters in the 104 administrations of the COM test. Chi-square goodness of fit
tests showed that all four methods significantly departed from the expected accuracy
rates. EXSPRT-I had the worst accuracy, but it should be noted that there were only
seven nonmasters in the estimation sample for creating the rule base, so this is not
surprising.

When the parameter estimation sample was 50, the AMT and EXSPRT-I models
still made significantly fewer correct nonmastery decisions than expected g priori. On
the other hand, the SPRT and EXSPRT--both of which use random selection of items
vs. intelligent selection in the AMT and EXSPRT-I-predicted masters and nonmasters
correctly within the bounds of expected error rates.

When the parameter estimation sample was 75 (55 masters and 20 nonmasters
when the cut-off was 72.5 percent correct), all models predicted well except the
AMT, which made significantly fewer correct nonmastery decisions than were
expected a priori.

When the parameter estimation sample was 100, the AMT model still had
problems with accuracy of nonmastery classifications. And strangely enough, the
AMT mode! also made significantly fewer correct maszery decisions than were
expected. The SPRT, EXSPRT-R, and EXSPRT-I all correctly predicted masters and
nonmasters within the bounds of expected accuracies. It should be noted that it is
generally recommended that a minimum of 200 examinees be used for estimating b,
parameters in the IRT-based, one-parameter AMT model. Only half that number
were available in this study. Thus, it is not surprising that the AMT model performed
less well than it should, since estimation of the item difficulty parameters was not as
precise as desired.

Efficiency. Average test lengths of the four adaptive methods were compared for
the 100 examinee parameter estimation situation only. See the bottom balf of Table
2.2. A MANOVA again revealed that the sphericity assumption was violated, and so
the same procedure as described above for the DAL test was used in post hoc
comparisons of the adaptive COM test length means [19].
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Table 2.1. Efficiency and Accuracy of the Four Adaptive Testing

Methods in the Second Study.’

ADAPTIVE TESTING METHNOD
item Parameter
Sample Description AMT SPRT EXSPRY-R EXSPRT-!I
MNean Score Nean Length Nean Length Nean Length Mean Length
($.D.) (s.D.) (s.t.) ($.D.) {5$.0.)
n Accuracy Accuracy Accuracy Accurscy
Kasters 86.21 8.37 11.711 10.05 4£.57
( 6.35) (13.5¢) ( 7.80) ( 5.42) ( 3.60)
18 7.4 98.7 8.7 28,7
Normasters 48.07 13.93 14.39 15.00 7.07
{ 9.10) (31.83) (15.81) {10.41) ( 2.38)
7 82.1* 85.7 82.1°
Total 75.53 15.25 12.43 11.38 5.2
(18.84) (23.02) (10.55) { 7.39) ( 3.49)
25 93.3 95.2 9.2 90.4
Nasters 87.16 11.83 15.08 11.n 5.72
( 5.68) (18.23) ( ¢.08) ( 8.28) ( 3.92)
35 94.7 96.1 8.7 96,1
Normasters 53.485 31.89 17.3¢ 15.82 7.93
(10.44) (29.97) (14.50) (12.70) ( 6.21)
15 78.4* 92.9 96.4 8.3
Total w1 17.23 15.70 12.82 é.32
€17.15) (23.61) (10.77) { 9.70) { 4.72)
50 90.¢ 95.2 98,1 9.2

*Percent accuracies were tested by goodness of fit, where .975 accuracy was
expected according to the a priori error rates for masters and normasters. Only
those percent accuracies which differed significantly from the expected sccuracies,
according to a chi-square test (d.f. = 1, p < .05) are merked with an asterisk.

"Alphe = § = 0.025 for the SPRT, EXSPRT-R, and EXSPRT-; a .95 confidence interval was used

with the AMT. There were 104 administrations of the COM test which were re~nacted for cach of the
four adaptive methods.
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Table 2.2. Efficiency and Accuracy of the Four Adaptive Testing
Methods in the Second Study (cont’d).

ADAPTIVE TESTING METHOD
Item Parameter
Sample Description ANT SPRY EXSPRT-R EXSPRT-!
Mean Score Mean Length Mean Length Mean Length Mean Length

($.0.) (S.0.) {$.D.) (s.0.) (s.D.)
n Accuracy Aceuracy Accuracy Accuracy

Nssters 87.68 10.21 16.64 11.78 7.70
( 5.93) {16.96) €10.35) ¢ 6.34) ( 7.13)

55 94.7 7.4 7.4 94,7

Nomnasters 546.00 28.93 16.29 14.75 7.82
(10.17) {28.58) (16.96) €(15.54) ¢ 4.85)

20 82,1+ 92.9 100.0 100.0

Total .23 15.2% 16.55 12.58 7.73
{15.84) (22.21) 12.39) ( 9.71) ( 6.57)

n 91.3 96.2 98,1 96,2

Masters 87.47 13.75 16.97 13.58 7.64
{ 6.33) (20.80) €10.79) ¢ 9.5 { 6.12)

Is) 03.4* 96,1 08.7 96,7

Normasters 54.00 31.50 13.04 12.32 3.93
11.34) 2.7 (10.66) €10.78) ( 7.41)

25 18.6* 92,9 96.4 100.9

Total 79.60 18.53 15.91 13.24 7.99
(18.70) (24.70) (10.82) { 9.8%) { 6.48)

100 82.4 5.2 °8.1 96.2

*Percent accuracies were tested by goodness of fit, whers .75 sccuracy was
expected according to the a prior{ error rates for mssters and normasters. Oniy
those percent accurscies which differed significantly from the expected accuracies,
according to a chi-square test (d.f. = 1, p < ,05) are merked with an asterisk.
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When nonmastery decisions were made, the AMT model required siguificantly
longer tests than either the SPRT, EXSPRT-R or EXSPRT-I. The AMT moadel
required about 32 items to reach nonmastery decisions, compared to the EX%¥RT-I,
which required about nine items. Moreover, the AMT made significantly fewer
correct nonmastery decisions than expected, as noted above. When masteryv decisions
were reached, test lengths for the SPRT and EXSPRT-R methods (15 and 12) were
significantly longer than the EXSPRT-I (6 items). Mean test lengths for mastery
decisions in the AMT and EXSPRT-1 models were not significantly different at ithe
.05 level.

When looking at decisions overall, the following contrasts were significantly
different: the AMT, SPRT, and EXSPRT-R methods each required significantly
longer tests than did the EXSPRT-I model. The AMT model required over twice as
many items as did the EXSPRT-I (19 vs. 8).

Summary. It would appear from the COM test data that the EXSPRT-I is
significantly more efficient than the other adaptive methods. Indeed, it is rather
remarkable that the EXSPRT-I can make such highly accurate mastery and
nonmastery decisions with relatively few test questions. It is also notable that the
EXSPRT-R and SPRT also made highly accurate predictions, but were less efficient
than the EXSPRT-I. The AMT performed worst of all, not only resulting in longer
adaptive tests but also in making significantly more prediction errors than theoretically
expected.

DISCUSSION

Adaptive tests tended to be shorter with the DAL test than with the COM test.
See Tables I, 2.1 and 2.2. Of the 53 administrations of the DAL test, there were 28
nonmasters and 25 masters when the cut-off was set at 72.5 percent and when
examinees answered all 97 items. The overall average test score was 63.2 (8.D. =
24.6). In the second study with the COM test there were 104 administrations of this
test, with 76 masters and 28 nonmasters when the entire 85-item test was taken (grand
mean = 79.0, $.D. = 13.6, mastery cut-off = 72.5 percent).

A similar study was conducted by Plew [13] with yet a different test on
computer literacy (referred to as the LIT test here). In his sample of 183 examinees
there were 54 masters and 129 nonmasters based on total test results from the 55-item
pool. The cut-off for this test was 59.5 percent, and the overall average score was
51.5 percent (S§.D. = 14.2).

One thing that appears to affect the average test lengths is the location and shape
of the distribution of examinee achievement levels in relation to the cut-off selected.
In the first. study, the distribution was somewhat bimodal and relatively flat, with
about half the examinees scoring above and below the cut-off. In the second study,
the distribution was positively skewed, with about three-fousths of the examinees
scoring above the 72.5 percent cut-off on the entire test item pool. In the Plew study,
over two-thirds of the examinees were classified as nonmasters on the entire 55-item
test [13]. The distribution of this group was close to normal, with the mean being
about 8 percentage points below the selected cut-off.

The author has previously conducted a number of computer simulations
comparing the three-parameter AMT model with the SPRT and a third adaptive
method based on Bayesian posterior beta distributions ({14},{20]). One important
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finding in those studies was that none of the adaptive methods performed as well as
expected—and average test lengths tended to be longer—when the distribution of
examinees was mostly clustered around the cut-off. Adaptive tests were shorter and
accuracies agreed with theoretical expectations when the distributions of examinee
achievement levels were much flatter. The same phenomenon appears to have
occurred in the present two empirical siudies, as well as in Plew’s.

The second factor that may affect results is the number of test items in each pool
and their properties. When there are more test items, and there are more items
available at each ability or achievement level, then both the AMT and EXSPRT-I tend
to be more efficient and more accurate. In both adaptive methods which rely on
“intelligent" selection of items, Bayesian posterior estimates are affected more
dramatically when there are highly discriminating items available whose difficulty
levels are close to the current estimate of an examinee’s achievement level. A real
problem occurs with smaller item pools, as was the case with the LIT test in Plew’s
study: After the best items have been administered early in a test, the remaining
items tend to provide little additional information. That is, there are diminishing
returns after some point because there are no really appropriate items left,

SUMMARY

Expert systems can be used to aid decision makers. A computerized adaptive
test (CAT) is one kind of expert system, though not commonly recognized as such.
When item response theory is used in a CAT, then the knowledge or rule base is a set
of item characteristic curves (ICC’s).

Normally an expert system consists of a set of questions and a rule base. An
inference engine uses answers to the questions and the rule base to choose from a set
of discrete alternatives. If an adaptive test is viewed this way, thea it is possible to
construct “If ..., then ..." rules about test items that are not functions, as are ICC’s.
A new approach, termed EXSPRT, was devised that combines expert systems
reasoning and sequential probability ratio test stopping rules. EXSPRT-R uses
random selection of test items, whereas EXSPRT-I incorporates an intelligent selection
procedure based on item utility coefficients.

These two new methods were compared to the traditional SPRT and to an IRT-
based approach to adaptive mastery testing (AMT). Two empirical studies with
different tests and types of examinees were carried out.

In the first study the EXSPRT-I model required about half as many items 2s dic
the AMT approach (6 vs. 14), though the difference was not statisrically significant.
When 50 examinees were used for item parameter estimation and rule base
construction, all four methods (AMT, SPRT, EXSPRT-R and EXSPRT-1) made
highly accurate mastery and nonmastery decisions.

In the second study the EXSPRT-I method again required ahout haif as many
items as did the AMT model (8 vs. 19), and this time the difference was statistically
significant. When 100 examinees were used for estimation purposes, the SPRT,
EXSPRT-R, and EXSPRT-I correctly predicted masters and nonmasters within the
bounds of the expected theoretical error rates. The AMT model, however, made
significantly more prediction errors than expected.

Although further research is needed, the EXSPRT-I initially appears to be a
strong alternative to both IRT- and SPRT-based adaptive testing when categorical
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decisions about examinees are desired. The EXSPRT-I is clearly less complex than
IRT, both conceptually and mathematically. It also appears to require many fewer
examinees to establish empirically a rule base when compared to the large numbers
required to estimate parameters for item response functions in the IRT model.

On the other hand, the EXSPRT is vulnerable, as is classical test theory, in that
a representative sample of examinees must be selected for constructing rule
quadruplets. This seems to be a small price to pay for the advantages of theoretical
parsimony and operational efficiency.
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